
Technical White Paper
Joe Macker: Naval Research Laboratory
Winston Dang: University of Hawaii
Last Revision: April 1996
˝

The Multicast Dissemination Protocol (MDP) version 1 Framework
˝

Abstract
This white paper outlines a simple protocol framework that was developed for reliable multicast
dissemination of data files. It also provides some historical development and testing history. The
general framework described here was originally developed and used by the Image Multicaster
(IMM) application within the Internet Mbone for reliable multicast file transfer. This document
describes the more general use of the protocol framework as a reliable bulk file transfer technique.
We discuss the present operational modes, some performance issues, and the basic application data
units (ADUs) used. This is not intended to be a detailed protocol specification document, but rather
a broad description of the basic protocol features and a discussion of issues.

Introduction
The Image Multicaster (IMM) application was originally designed and implemented during 1993 as
a reliable multicast tool with the intention of disseminating compressed imagery files to a group of
multicast receivers. It was operated and tested within the worldwide Internet Multicast Backbone
(Mbone) for reliable bulk transfer of satellite imagery files using UDP/IP multicast transport as
defined in RFC 1112 [2]. Besides imagery dissemination support, the IMM reliable multicast
framework proved useful and was demonstrated as a general reliable multicast file transfer
application. In order to further clarify the general application of this framework, we refer to it as
the Multicast Dissemination Protocol (MDP) within this and future documents. This introductory
white paper provides a functional overview of the MDP protocol framework and discusses
application data unit (ADU) types used in the early implementation.

Motivation
Generic IP multicast builds upon the connectionless, best effort service provided by UDP or raw IP
and provides no guaranteed reliable or ordered delivery of data to end applications. Rather than an
apparent reliability disadvantage, this feature can be advantageous in supporting a rich set of
application classes that can best determine their own definition of reliability and protocol operation
by incorporating application layer considerations [5]. While there are a number of application
classes with unique requirements motivating a variety of reliable multicasting design approaches,
there is a general need for non-real-time bulk file transfer support. This is the specific category of
problem to which MDP provides a candidate solution. There are a numerous references for more
extensive discussions of reliable multicasting design and application issues [4,7].

Description of IMM/MDP Approach
MDP is a protocol framework that implements reliable multicasting for bulk files using application
layer framing concepts [5]. The MDP framework consists of both receiver and source software
modules. Multicast receivers wishing to subscribe to a multicast file dissemination service require

the receiver module, while dissemination sources require the source module functionality. Present
distributed versions of the IMM software package provide both receiver and source functionality.

At present, MDP performs its protocol functionality using a single multicast group for an active file
transfer session. MDP uses selective negative acknowledgement (NACK) to request repairs of
missing data. It uses NACK suppression methods and event timers to reduce congestion and
retransmission requests within the network. Both NACKs and retransmissions are multicast to the
group to aid in feedback suppression. This is an important scalability feature for operating such a
framework within a WAN infrastructure with a potential large receiver set. This feature and
additional message aggregation functionality help reduce the likelihood of control message network
implosion effects.

History of Network Usage
As mentioned, the IMM/MDP approach has been used within the Mbone for periodic dissemination
of satellite imagery to subscribed receivers worldwide. With a simple connection to the Mbone,
IMM allowed users from around the world to continuously view the latest weather images from
satellites covering most of the earth. The initial project and testing lasted for several months
transmitting hourly satellite images derived from the GMS-4, GOES-7, METEOSAT, and GOES-8
satellites. Rapid dissemination of time sensitive information without the need for a worldwide
hierarchical distribution system was a key beneficial feature of reliably multicasting over the
Mbone.

Protocol Framework and Operation
The following section discusses the overall functional operation and design of the MDP version 1
protocol framework. There are a number of protocol variables and operational modes that are
described, but it is not the intent of this document to provide functional specification level of detail.
Figure 1 is a high level description of the operation of the MDP framework. Basic UDP/IP
multicast provides the transport channel for the service and the MDP reliability process provides
reliable delivery of transmitted file data to multicast receivers.

 |--MDP Reliability Process--| | Archive |
 v v -----------
--------- ---------- ------------- ^
file/		MDP	------------->	MDP	
bulk	->	Source	<-------------	Receivers	---------
data			Multicast		
--------- ---------- Dissemination ------------- v
 Channel --------------
 | Post |
 | Processor |
 | e.g, image |
 | viewer |

Figure 1: High Level MDP Operation

The MDP source fragments file data into a series of data units based upon the MDP maximum data
unit (MDU) length setting. This data is provided to receivers over a multicast dissemination
channel using UDP/IP multicast transport. Source and receiver MDP processes use an initial

transmission cycle and a successive series of recovery cycles to ensure reliable delivery of file data
among the group of multicast receivers. The transmission cycle is the period in which data is first
transmitted and a recovery cycle is a period during which data repair requests are serviced and
selectively requested data repair packets are retransmitted. An operational description of the
transmission and recovery cycles is presented later in this document.

Source Features
The MDP source is designed to transmit a file of any type or an entire directory structure to a
multicast receiver group. The user can set the source to reliable transmit all files within a hierarchy
once only or continuously. If set continuously, the source can multicast files in a round robin
scheduled fashion or optionally transmits updated files in the directory after one complete initial
pass through the directory. The source checks for updated files by examining the file timestamp
and comparing it to the sources last file sent timestamp. In effect, this optional feature allows for an
underlying file update frequency to more directly determine the required transmission frequency.

The present MDP source design is based upon an explicit rate control mechanism. The user or an
automated rate control mechanism has the ability to control the transfer rate as well as an additional
transmission frequency wait period. The transfer rate pertains to the actual transmission rate of
individual packets from the multicast source. The source uniformly distributes packet transmission
times based upon this setting and the MDU value. The transmission frequency wait period defines
an amount of time to wait before starting the transmission of successive files. A zero setting for
this wait period allows for continuous file transfers, whereas a setting of 3600 seconds results in the
next file being transmitted one hour after completion of the previous file transmission.
If the source is not finished transmitting a complete file before the expiration of the frequency
setting, the source will attempt to complete the full file transmission procedure. Therefore a zero
setting results in back to back full file transmissions. In the special case of continuous file
transmissions, the source has the ability to stack multiple simultaneous file transmissions and
recoveries up to a predefined maximum state cache limit (e.g., 8 files). This overlapping of
transmission and recovery cycles results in more effective usage of bandwidth during recovery
cycle periods when the source is waiting to collect receiver requests for missing data.

For applications desiring positive acknowledgment of files received from receivers, the source
provides an optional operational mode that requests that receivers provide a positive
acknowledgement upon final receipt. Again, the receiver responses are designed to be random time
delayed over a uniform window to smooth out the flow of packet data proceeding back to the
source.

Receiver Features
The MDP multicast receiver application has been designed to offer flexibility in processing each
newly received file. As shown in Figure 1, receiving nodes have the individual option of allowing
the newly received file to be either archived or post processed through a user selected executable
(e.g., jpeg viewer, web client, slideshow application), as shown in Figure 1.

In the present design, the receiver is also capable of tracking several file transmissions
simultaneously from a single source as well as from multiple sources. Transmission from multiple
independent sources allows for collaborative distribution of files between large audiences. The

receiver properly reassembles file transmissions arriving from multiple independent sources
sending on the same multicast address.

Within the present design, receivers are free to drop in or out of a group session. However, upon
initiation of a receiver, a group membership packet is sent by the receiver to cordially announce
participation in receiving session data. At the present time, such announcements are optionally
used by other session receivers to track membership and session statistics.

MDP ADU Packet Types
To provide some background terminology to the reader prior to a detailed discussion of protocol
operation we present ADU packet types and a brief description of how they are used by MDP.
The MDP framework uses five main types of ADU packets to transfer information.

(1) Identification Used by source convey file information
(2) Data Used by the source to transmit file data
(3) Missing Data Used by receivers to report missing data to source
(4) Command Used by source to query or trigger receiver responses
(5) Statistic Used by receiver to report summary statistics

Identification (ID) ADU Packet

The ID ADU packet provides file information to the receivers. It is used to advertise upcoming
transmissions and the wait period and also indicate the end of transmission cycles. The ID ADU
contains the following type of information.

• protocol version
• file identification number (source unique)
• file size (bytes)
• delay interval between transmissions
• file name
• protocol flags

The file identification number is a source unique assigned number which serves as a reference
handle to allow receivers to make specific requests concerning a particular file. The ID packet is
transmitted at the beginning of each file transmission, the end of each file transmission, and also at
the end of its recovery cycle period. In this way, the ID packet helps synchronize the negative
acknowledgment recovery cycle period between all of the receivers.

Data ADU Packet
The Data ADU packet is used by the source to transmit the actual data content of a file.
Transmission is performed by dividing each file into fixed length segments, the application layer
maximum data unit (MDU). These segments make up the payload within data ADU packets.

The Data ADU contains the following type of information.

• protocol version

• file identification information
• position counter (offset)
• block id (optional to identify FEC boundaries,etc)
• flags
•

The position counter along with the MDU size is used to determine the file offset in bytes from the
beginning of the file. It allows the receiver to reconstruct the original file by inserting the data
segment into a duplicate file at the same offset. Data packets are multicasted sequentially during
initial file transmission. During a recovery cycle, data packet retranmissions are selectively
triggered by missing data repair request packets from receivers described below.

Missing Data Repair Request ADU Packet
The Missing Data Repair Request ADU packets are receiver requests for retransmission of repair
data packets for a particular file from a particular source. The Data Repair Request ADU is
multicast to the group and contains the following type of information.

• protocol version
• file identification information
• source IP address
• flags
• missing packet indicator
• missing data (bitmasks or lists)

Receiver scalability across large groups is another important feature of MDP. The key to this
capacity is that receivers primarily use NACKs, or missing data repair requests, for feedback to the
source. NACK-based reliability sharply reduces receiver requests to the source. Receivers only
request data not received by detected gaps in received data and suppress repair requests by tracking
duplicate requests within the multicast group. See the recovery cycle section for more discussion
of this feature. The missing packet indicator optionally uses a number of different approaches. It
can represent missing packets by providing a list of missing packet ids (e.g., counters) or through
the transmission of a binary bit mask array representing the received or missed block of packets. In
the case of erasure-based parity correction, this segment may contain the maximum number of
missing packets and the block id or a set of parity packet bitmasks.

Command ADU Packet

The Command ADU contains the following type of information.
• protocol version
• file identification information
• flags
• cycle duration
• list of positively acknowledged receivers

Command ADU packets are source requests for quick timed delay responses from receivers. Based
on the flag settings, the source can optionally request positive acknowledgment (PACK) of specific
files or only request for responses if data was not received (NACK). Receivers accordingly
respond with associated NACK and PACK responses, however receivers will not send a duplicate

NACK if another receiver has been heard sending the same request within the present recovery
cycle. The command packet also provides the mechanism for a return handshake to receivers
indicating positive acknowledgement reception. This is done by including in the Command packet,
a variable length list of confirmed list of receiver IP addresses from which the source has received a
positive acknowledgment. See the recovery cycle and the statistics report packet for a more
information.

Statistics Report ADU Packet

The statistic ADU packet provides general statistical summary information from a receiver that has
been receiving data from a source. The Statistics Report ADU contains the following type of
information.

• protocol version
• file identification information
• source IP address
• flags
• complete files received
• incomplete files
• total packets received
• total number of retransmission requests

Receivers to provide positive receipt of file reception to MDP sources can use the file identification
information as a handshake indicator of complete reception.

Transmission Cycle Overview

The MDP source transmission cycle is briefly described as follows. The MDP source enters the
initial transmission cycle and multicasts an ID packet specifying the name of the file, its size, and
the delay between transmissions. The source begins multicasting the contents of the file using data
packets uniformly distributed in time based upon the present transmission rate value (this value can
be dynamically changed if a rate-based congestion control algorithm is in use). Each data packet
contains a file identifier and a file offset pointer to uniquely identify each packet for receiver
reassembly. Upon completion, the source enters a series of recovery cycles to retransmit missing
data packets reported by receivers. The source repeats the recovery cycle process until it receives
no more requests from receivers or until a timeout expires. A summary state diagram of the source
transmission cycle is shown in Figure 2.

{send ID}->{send data}-> {recovery cycle} -> {no requests/timeout}
 ^ | ^ |
 | v | v
 | {retransmit data} {send cmd seq
 | nack request}
 | |
 | v
 |<---{receiver resp}<-{yes}<-{any response?}
 |
 v
 {no}
 |

 v
 {finish}

Figure 2: Source State Diagram

Recovery Cycle Overview

The following steps detail what happens in the MDP recovery cycle. During the recovery cycle
receivers make repair requests by providing an aggregate list of missing packets to the source. This
list of requested packets is transmitted within the multicast group. Since the receivers make
random delay requests over a backoff window, the probability of receivers sensing duplicate repair
requests within multicast group responses is increased.

All packets sent by the source during the recovery cycle contain an EOF flag setting and a recovery
cycle flag which marks a transition to a new recovery cycle. To mark the cycle, the source first
broadcasts an ID packet, then uses a heartbeat timer setting (e.g., 2 seconds) to trigger successive
command packet transmissions for synchronizing receivers. When the receiver detects entry into a
new recovery cycle, a random time delayed missing repair request packet response is triggered.
Each receiver is allowed only one random time delay request for missing packets within a given
recovery cycle. The receiver request for missing packets should not repeat any missing packet
requests previously heard from any other receivers during that recovery cycle. The source will
immediately retransmit missing packets reported while continuing to listen for additional receiver
repair requests. Upon completing retransmission, the source begins a new recovery cycle and sends
another ID packet and set of command packets. If no receiver requests are heard during the
recovery cycle the source will time out dependent upon on the present frequency settings. The
purpose of a source controlled recovery cycle period is to shorten the duration of the cycle period
and to increase the turnover frequency of recovery cycles. A higher recovery cycle turnover
frequency results in faster file transfer to all receivers. An overview of the source recovery cycle
state diagram is shown in Figure 3.

{send ID/toggle header flag}->{wait period}-->{no requests/timeout}
 ^ | |
 | V v
 | {request heard} <--| {send cmd}
 | | | |
 | V | |
 |<-----------{retransmit data} | |
 | V
 - ---{timed out}
 |
 V
 {End}

Figure 3: Source Recovery Cycle State Diagram

In the present design, each receiver tracks delivery of the file in block segments. If the file is larger
than this size, it dynamically allocates memory to track the additional data segment. If a receiver
determines it is also missing packets at the end of a block segment and is allowed to make requests
for missing packets by the source (auto request header flag setting), the receiver enters into a
recovery cycle phase as defined above. Upon completion of the recovery cycle, the source resumes
transmitting the file where it left off. If the receiver determines the source has transitioned to a new

data segment (as defined above) it will reenter the recovery cycle phase to request any missing
packets if they still exist. This mode of operation allows for data repair cycles to occur at defined
intervals during the initial data transmission rather than requiring multiple passes upon one
complete transmission of the file. The purpose of this feature is to regulate the source from
advancing too far ahead of receivers requiring repair packets.

When servicing a missing data repair request, the sources automatically multicast all data packets
requested. Upon fulfilling all requests the source will send another ID packet and toggle the
recovery cycle flag. The recovery cycle flag indicates to all receivers the beginning of a new
recovery cycle. The recovery cycle time duration is determined by a timer value for the heartbeat
interval (e.g., 2 secs). The source continues the recovery cycle process until the source completes
one cycle without any receiver repair requests being received. If at this time the source has
completed the file transmission, the source will send a periodic sequence of command packets with
the NACK flag set. Upon hearing this command packet, receivers that have not received a complete
file are designed to do a short time delayed response to the source to keep it in the recovery cycle.
Once again, a receiver will not make a response if it had previously heard a similar receiver
response. The source only needs to hear one response before starting back into the recovery cycle.
An overview of the receiver recovery cycle is shown in Figure 4.

{Packet contains EOF} -> {Toggled Recovery Flag?} ->{Initiate time
 ^ delay response}
 | |
 | v
 | {Listen for other
 | receiver requests}
 | |
 | v
 |< -{Send non-duplicate}<-{missing data} <-- {Timeout}
 | {repair request} |
 | |
 | |
 | v
 | {file completed}
 | |
 | v
 |<---{send stat report}<---- {no} <-- {source heard PACK?}
 |
 {yes}
 |
 v
 {End of cycle}

Figure 4: Receiver Recovery Cycle State Diagram

An optional operational mode is available in which the source can request positive
acknowledgment of complete file reception from receivers, the source will set the PACK flag in all
outgoing packets. Upon file completion, receivers will multicast a random time delay stat packet.
For each command packet received from the source, each receiver will continue to send a stat
packet (at a heartbeat interval) until it has timed out or has received a command packet from the
source acknowledging receipt of receiver’s stat message. This optional mode of operation is not
recommended when large group membership is anticipated, due to the corresponding increase in
multicast message traffic. It can, however, provide list-based file receipt assurance for particular
members when desired.

To improve achievable throughput, the source may initiate another file transfer while being in the
recovery cycle of another. The transmission rate remains constant since the new file transfer
process and existing recovery cycle are performed asynchronously. The source always responds
first to receiver requests then resumes new file transfer. As detailed above in the source recovery
cycle, anytime the source’s packet transmission changes to a new data segment being tracked by the
receiver, the receiver will enter into a recovery cycle to request any missing packets in the old
segment.

Future Work and Design Issues

While the present design has been through limited Mbone testing and has been shown to work
effectively and efficiently for a number of applications, there remain are number of design issues
which the authors envision will continue to evolve. One of these issues is future approaches to
flow control and congestion avoidance within a multicast group environment. We feel this is a
general problem and not unique to MDP. While effective reactive flow control in a multicast
environment remains a complex technical design issue, there are basic rate control features in the
present design that can be controlled dynamically.

In continuous transmit mode, the source can optionally adjust the data transfer rate by monitoring
feedback of total packet retransmission requests from receivers as compared to total packets sent
for each file. The authors are aware that future design modifications are likely to occur here since
many important issues remain unresolved concerning reliable multicast reactive flow control for
WAN environments. We are exploring modifications to the protocol framework in this area.
Nonetheless, in many instances, source rate control can work effectively (e.g., combination with a
resource reservation protocol). We recognize the difficulty of managing a large group session
around single or small populations of faulty or poorly performing receivers operating below a
desired group throughput threshold. As is presently done with many other Mbone applications
(e.g., compressed video, audio), we recommend that MDP/IMM users pay close attention to initial
rate settings of their sources. To prevent accidental poor practice, reasonable lower and upper rate
limit settings and default values are used within the distributed software implementation release.
In summary, MDP provides some optional rate adaption capability based upon negative
acknowledgements experienced within the recovery cycle. There are two reasons we caution
against protracted use of this technique: packet loss does not always indicate congestion and the
delayed aggregation of repair messages delays the statistical feedback to the source.

On the upside, NACK aggregation and duplicate request suppression at receivers keeps reliable
control loop traffic somewhat minimized during bulk data transfer. This simple approach can be
quite effective for a number of non-real-time bulk file transfer applications.

We envision future, potential advantage in applying this protocol framework in combination with a
reservation protocol (e.g.,RSVP [6]) and future integrated or differential services capabilities.
The source rate control setting can be reflective of the bandwidth reserved and protocol timers can
be better tuned to operate within average or upper bound delay expectations. Proactive flow
control is supported through Integrated Services Architecture (ISA) components and the protocol

does not have to surrender its message reduction efficiency for the sake of reactive feedback
control. Such a coupling is not required for protocol correctness, but operation in conjunction with
underlying ISA capabilities can support better overall performance.

In addition, for high error rate and asymmetric network channels the adaptation of MDP to a hybrid
reliable multicast dissemination scheme using both forward error correction and retransmission is
presently under design and consideration. Work on MDP version 2 is underway at NRL to look at
this issue and develop more advanced solutions beyond the MDPv1 framework presented here.

Suggested Usage

As mentioned, the present MDP framework is seen as useful for the reliable bulk file transfer over
generic IP multicast services. It is not the intention of the authors to suggest it is suitable for
supporting all envisioned multicast reliability requirements, but rather it provides a simple
framework for multicast file dissemination applications with a degree of concern for network traffic
implosion. As previously described, over several years IMM has been successfully demonstrated
within the MBone for reliable bulk data dissemination applications, including weather satellite
compressed imagery updates servicing a large group of receivers.

In addition, this framework approach has some design features that make it attractive for bulk
transfer in future asymmetric network applications. The multipass repair cycles allow receiver
group members to better aggregate and minimize duplicate repair requests with looser timing
estimation and windowing requirements than approaches designed for smaller messaging and real-
time interaction. A source-only repair approach with unicast feedback may also make technical
sense in asymmetric networks. Asymmetric architectures supporting multicast delivery are likely
to make an important portion of the future Internet structure (e.g., DBS/cable/PSTN hybrids) and
efficient, reliable bulk data transfer will be an important capability for servicing large groups of
subscribed receivers.

References

[1] W. Dang. "Reliable File Transfer in the Multicast Domain". Technical
Report. August 1993

[2] S. Deering. "Host Extensions for IP Multicasting". Internet RFC
1112, August 1989.

[3] J. Chang and N. Maxemchuk. "Reliable Broadcast Protocols". ACM
Transactions on

[4] S. Floyd, V. Jacobson, S. McCanne, C. Liu, and L. Zhang. "A Reliable
Multicast Framework for Light-weight Sessions and Application Level
Framing". In Proc. ACM SIGCOMM, August 1995.

[5] D. Clark and D. Tennenhouse. "Architectural Considerations for a New
Generation of Protocols". In Proc. ACM SIGCOMM, pages 201--208,

September 1990.

[6] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. "RSVP:
A New Resource ReSerVation Protocol". IEEE Network Magazine, pages
8--18, September 1993.

[7] J. Macker, M. Corson, E. Klinker, "Reliable Multicast Data Delivery
for Military Internetworking". IEEE MILCOM 96 Proceedings, pages
399-403, October 1996.

